If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-152x+2040=0
a = 2; b = -152; c = +2040;
Δ = b2-4ac
Δ = -1522-4·2·2040
Δ = 6784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6784}=\sqrt{64*106}=\sqrt{64}*\sqrt{106}=8\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-152)-8\sqrt{106}}{2*2}=\frac{152-8\sqrt{106}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-152)+8\sqrt{106}}{2*2}=\frac{152+8\sqrt{106}}{4} $
| 30=e-18 | | x/14-3/14=5 | | 2x(x+10)=5x-18 | | 5=2d=19 | | x+(x/10)=154 | | x^2-130x+800=0 | | (y+1)^2=2y-5y+11 | | -7(x+5)=-21 | | -7(x+5)=-211 | | 5x/8-3x/16=1/4 | | 8x+-5+x=67 | | 0.4x(1-x)-0.08=0 | | (0.96592582628)*x=15000 | | 1/4x2/3x+50=x | | (1.2799416)*x=91 | | (0.57357643635)*x=17000 | | 6p=0.6(5p+13) | | -42+-7d=49 | | (13x-21)+(13x-21)+85+31=360 | | 2w/4=21 | | 275-v=173 | | 139=-y+197 | | 29=23x-42 | | (y+29)+40+2y=180 | | -2+1x=-15x^ | | 0.5=j/3 | | 75+(52+x)+(67+x)=180 | | d^2+42=52 | | 2x(x+10)=5x+18 | | x(3x-5)/2=(x+5)/4 | | x/7x-4=3x+16 | | 9x+6=x-81 |